Leia o excerto de texto a seguir. “Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, e o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidades de funções”. Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: Lima, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. p. 161. Conforme os conteúdos do livro-base Análise Matemática com respeito à conceitos topológicos, enumere, na ordem sequencial, as definições – em linguagem não formal – que se relacionam a cada um dos elementos a seguir: 1. Conjunto aberto 2. Ponto interior 3. Conjunto fechado 4. Ponto de acumulação 5. Conjunto compacto 6. Ponto aderente ( ) É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele. ( ) É todo conjunto que é simultaneamente fechado e limitado. ( ) É um conjunto tal que todos os pontos aderentes pertencem à ele. ( ) É um ponto que possui uma vizinhança inteiramente contida no conjunto. ( ) É um ponto que é limite de uma sequencia de elementos do conjunto. ( ) É um conjunto onde todos os seus pontos são interiores. Agora marque a sequência correta:
Ainda não há comentários para esta questão.
Seja o primeiro a comentar!