Questão de Álgebra Linear
Exercício 14. Considere o seguinte sistema linear nas incógnitas
{x + ay + z = 3
2x - y + z = a
ax + 4y + 2z = 6 }Determine todos os valores de
- (a) tem uma única solução;
- (b) não tem solução;
- (c) tem infinitas soluções. Nesse caso dê o conjunto solução do sistema.
(a) O sistema possui uma única solução quando
(b) O sistema não tem solução se
(c) O sistema possui infinitas soluções se
- se
x é variável livre,S = ig\{(x, y, z) = (x, x + rac{1}{3}, 7 - rac{5x}{3}), orall x \\in ext{R} \big\ ext{} - se
y é variável livre,S = ig\ ext{(x, y, z) = (-1 + 3y, y, 4 - 5y), orall y \\in ext{R}}\big ext{} - se
z é variável livre,S = ig\ ext{(x, y, z) = (7 - rac{3z}{5}, 4 - rac{z}{5}, z), orall z \\in ext{R}}\big ext{}
A
O sistema possui uma única solução quando a
eq 1 e a
eq 2 .
B
O sistema não tem solução se a = 1 .
C
O sistema possui infinitas soluções se a = 2 .
D
O conjunto solução S é ig ext{(x, y, z) = (x, x + rac{1}{3}, 7 - rac{5x}{3}), orall x \\in ext{R}}\big ext{} .
E
O conjunto solução S é ig ext{(x, y, z) = (-1 + 3y, y, 4 - 5y), orall y \\in ext{R}}\big ext{} .
Comentários
Ainda não há comentários para esta questão.
Seja o primeiro a comentar!