Questões

Pratique com questões de diversas disciplinas e universidades

769 questões encontradas(exibindo 10)

Página 24 de 77

Numa determinada empresa, o número de funcionários que ganham entre 3 a 5 salários mínimos é de 48. Sabendo que o número total de colaboradores são de 200, qual é a frequência relativa dessa faixa salarial?

A

25%

B

27%

C

26%

D

28%

E

24%

Qual é o propósito deste documento?

A
Apenas I está correto.
B
Apenas II está correto.
C
Apenas III está correto.
D
I e II estão corretos.
E
I, II e III estão corretos.

As entregas realizadas para uma empresa que têm sempre o mesmo destino e as mesmas condições gerais têm ocorrido dentro do prazo em 86\% dos pedidos. Se são prometidas 20 entregas deste tipo, qual a probabilidade de que pelo menos 16 ocorram no prazo?

A
0,8625
B
0,1666
C
0,0000
D
0,0014
E
0,6959
A respeito dessas asserções, assinale a alternativa correta:
A
A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
B
As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
C
As asserções I e II são proposições falsas.
D
As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.
E
A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
Freud criou duas teorias de estrutura do Aparelho Psíquico. A primeira teoria de estrutura define que o aparelho psíquico é dividido nas seguintes instâncias:
A
Inconsciente, Ego e Superego.
B
ID, EGO, SUPEREGO
C
ID, Pré-consciente e Consciente.
D
Inconsciente, pré-consciente e consciente.
E
Inconsciente, pré-consciente e Ego.

Em uma escola, 90\% dos alunos gostam de matemática e 80\% gostam de ciências. Se 70\% dos alunos gostam tanto de matemática quanto de ciências, qual é a probabilidade de um aluno gostar de matemática ou ciências?

A
0.95
B
0.80
C
0.70
D
0.90
E
0.85

289. Problema: Um dado é lançado 5 vezes. Qual é a probabilidade de que pelo menos dois números lançados sejam iguais?

A
P(pelo menos 2 iguais) = 1 - P(todos diferentes)
B
P(pelo menos 2 iguais) = 1 - P(todos diferentes)
C
P(pelo menos 2 iguais) = 1 - P(todos diferentes)
De sua turma de 30 alunos, é escolhida uma comissão de 3 representantes. Qual a probabilidade de você fazer parte da comissão?
A
\frac{1}{10}
B
\frac{1}{12}
C
\frac{5}{24}
D
\frac{1}{3}
E
\frac{2}{9}

Um haras solicitou assistência veterinária devido a seus potros apresentarem alguns sintomas respiratórios. Ao avaliar a tropa, percebeu que somente os animais jovens, com aproximadamente 1 ano de idade, apresentaram a sintomatologia. Três dos animais avaliados apresentavam abscesso (coleção de pus) na região do pescoço de onde o veterinário coletou amostras para análise microbiológica. Ao cultivo foram observados cocos Gram positivos que ao microscópio estão dispostos em cadeia. São catalase negativos e apresentam beta-hemólise no cultivo em ágar sangue. Com essas informações, qual o provável agente etiológico e doença que está acometendo o plantel?

A
Burkholderia mallei, agente da Adenite equina.
B
Streptococcus zooepidemicus, agente do mormo equino.
C
Streptococcus equi zooepidemicus, agente do garrotilho eqüino.
D
Burkholderia mallei, agente do mormo equino.
E
Streptococcus equi equi, agente do garrotilho equino.

Deixar X representar o número de clientes que chegam durante as horas da manhã e permitir E representar o número de clientes que chegam durante as horas da tarde em um restaurante. Você recebe:

  1. i) X e E são distribuídos por ext{Poisson}.
  2. ii) O primeiro momento de X é menor que o primeiro momento de E até 8.
  3. iii) O segundo momento de X é 60 ext{ ext{%}} do segundo momento de E.

Calcular a variância de E.

A
4
B
12
C
16
D
27
E
35