Questões

Pratique com questões de diversas disciplinas e universidades

2.862 questões encontradas(exibindo 10)

Página 22 de 287
O cálculo de juros compostos é modelado pela relação: M = P(1 + i)^n, sendo o montante (M) é uma função exponencial que depende do tempo (n), sendo a taxa de juros sempre positiva, assim a base será maior que 1, caracterizando a função como crescente. Analisando o comportamento do montante em relação a um período anterior é possível afirmar que:
A
o montante obtido em um período à juros compostos sempre será maior que o montante recebido no período anterior.
B
o montante obtido em um período à juros simples nunca será maior que o montante recebido no período anterior.
C
o montante obtido em um período à juros compostos sempre será menor que o montante recebido no período anterior.
D
o montante obtido em um período à juros compostos algumas vezes será maior que o montante recebido no período anterior.
E
o montante obtido em um período à juros simples sempre será menor que o montante recebido no período anterior.

Um grupo de amigos decide fazer uma viagem e alugar um carro. O custo total do aluguel é de R$ 600,00. Se 5 amigos dividirem igualmente o custo, quanto cada um deve pagar?

A
R$ 100,00
B
R$ 120,00
C
R$ 150,00
D
R$ 200,00

O que caracteriza um espaço topológico ser localmente compacto?

A
Cada ponto tem uma vizinhança compacta.
B
O espaço inteiro é compacto.
C
O espaço é conexo.
D
O espaço é Hausdorff.
O que é um grafo regular?
A
Um grafo é regular se todos os seus vértices têm graus diferentes.
B
Um grafo é regular se todos os seus vértices têm o mesmo grau.
C
Um grafo é regular se todos os seus vértices estão conectados entre si.

A derivada pode ser entendida como taxa de variação instantânea e, geometricamente, como a inclinação da reta tangente a uma curva, em um ponto desta curva.
Encontre a equação da reta tangente à f(x) no ponto (4, 2).

A

y = 1/4 x.

B

y = 1/4 x + 1.

C

y = 1/4 x².

D

y = 1/4 x² + 1.

E

y = -1/4 x + 1.

Se X é um espaço topológico e A é um conjunto fechado, qual das opções abaixo é verdadeira sobre a complementaridade?

A
O complemento de A é aberto.
B
O complemento de A é fechado.
C
O complemento de A é denso.
D
O complemento de A é vazio.

O que caracteriza um espaço topológico como totalmente desconexo?

A
Cada ponto é um conjunto aberto.
B
Cada conjunto não vazio é conexo.
C
Não existem conjuntos conexos não vazios.

Roberta precisa comprar Água Sanitária para a higienização da empresa. Considerando que O preço de um litro desse produto é R$ 2,80, quantos litros são possíveis comprar com R$ 46,20?

A
17.
B
16,5.
C
15,5.
D
16.
E
15.

O que é um espaço topológico de Baire?

A

Um espaço onde a interseção de conjuntos abertos é não vazia.

B

Um espaço onde a união de conjuntos fechados é não vazia.

C

Um espaço onde a interseção de uma coleção numerável de conjuntos abertos é densa.

D

Um espaço onde a união de uma coleção numerável de conjuntos fechados é densa.

A partir dos nossos estudos, podemos dizer que o Teorema de Stokes é uma grande generalização do teorema fundamental do cálculo, que estabelece que a integral de uma função f sobre um intervalo [a, b] pode ser calculada através da busca de uma antiderivada F de f. E o Teorema de Green relaciona a integral de linha ao longo de uma curva fechada no plano com a integral dupla sobre a região limitada por essa curva.

Sendo assim, é correto afirmar sobre esses teoremas:

A

Os Teoremas de Green e Gauss são os grandes teoremas de integração em várias variáveis e possuem importantes aplicações na geografia e na história.

B

Os Teoremas de Green e Gauss são os grandes teoremas de integração em várias variáveis e possuem poucas aplicações em qualquer área da matemática.

C

Podemos dizer que os Teoremas de Green e Gauss são teoremas de pequena importância e consistem na integração de três variáveis e possuem poucas aplicações na geometria e na física.

D

Os Teoremas de Green e Gauss são os grandes teoremas de integração em várias variáveis e possuem importantes aplicações na geometria e na física.

E

Os Teoremas de Green e Gauss são os grandes teoremas de busca de domínios matriciais em várias variáveis e possuem importantes aplicações na geometria e na física.